Designing and Implementing a Data Science Solution on Azure

WGAC-MIC-DP-100T01

Microsoft Training Courses Certification

Schedule

See all training events for this courseSee all CoursesProfessional Services & Support
Classroom
Open
Microsoft

Designing and Implementing a Data Science Solution on Azure

WGAC-MIC-DP-100T01

Zurich

Language: German

CET UTC+01:00

Start date:23 Oct 2023 09:00
End date:26 Oct 2023 17:00
Duration:4 days

$ 2,703

Classroom
Open
Microsoft

Designing and Implementing a Data Science Solution on Azure

WGAC-MIC-DP-100T01

Hamburg

Language: German

CET UTC+01:00

Start date:23 Oct 2023 10:00
End date:26 Oct 2023 17:30
Duration:4 days

$ 2,330

Virtual Classroom
Open
Microsoft

Designing and Implementing a Data Science Solution on Azure

WGAC-MIC-DP-100T01

Virtual ILT

Language: English

GMT UTC+00:00

Start date:06 Nov 2023 09:00
End date:09 Nov 2023 17:00
Duration:4 days

$ 2,884

Virtual Classroom
Open
Microsoft

Designing and Implementing a Data Science Solution on Azure

WGAC-MIC-DP-100T01

Virtual ILT

Language: Polish

CET UTC+01:00

Start date:06 Nov 2023 09:00
End date:09 Nov 2023 17:00
Duration:4 days

$ 644

Classroom
Open
Microsoft

Designing and Implementing a Data Science Solution on Azure

WGAC-MIC-DP-100T01

Paris

Language: French

CET UTC+01:00

Start date:20 Nov 2023 09:00
End date:22 Nov 2023 17:00
Duration:3 days

$ 2,223

Description

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring with Azure Machine Learning and MLflow.

Successful Azure Data Scientists start this role with a fundamental knowledge of cloud computing concepts, and experience in general data science and machine learning tools and techniques.

Specifically:

  • Creating cloud resources in Microsoft Azure.
  • Using Python to explore and visualize data.
  • Training and validating machine learning models using common frameworks like Scikit-Learn, PyTorch, and TensorFlow.
  • Working with containersTo gain these prerequisite skills, take the following free online training before attending the course:
  • Explore Microsoft cloud concepts.
  • Create machine learning models.
  • Administer containers in AzureIf you are completely new to data science and machine learning, please complete Microsoft Azure AI Fundamentals first.

The description for this course is currently being updated.

  • Design a data ingestion strategy for machine learning projects´
  • Design a machine learning model training solution
  • Design a model deployment solution
  • Explore Azure Machine Learning workspace resources and assets
  • Explore developer tools for workspace interaction
  • Make data available in Azure Machine Learning
  • Work with compute targets in Azure Machine Learning
  • Work with environments in Azure Machine Learning
  • Find the best classification model with Automated Machine Learning
  • Track model training in Jupyter notebooks with MLflow
  • Run a training script as a command job in Azure Machine Learning
  • Track model training with MLflow in jobs
  • Run pipelines in Azure Machine Learning
  • Perform hyperparameter tuning with Azure Machine Learning
  • Deploy a model to a managed online endpoint
  • Deploy a model to a batch endpoint