Select a different country or region to see content specific to your location and make online purchases.
x
GB
/
GBP
Image
Filter Events

Exam Readiness: AWS Certified Machine Learning - Specialty

WGAC-AWS-ERMLS

Amazon Web Services Training Courses Certification

Schedule

See all events for this courseSee all Courses
Open
Amazon Web Services

Exam Readiness: AWS Certified Machine Learning - Specialty

WGAC-AWS-ERMLS

Milan

Language: Italian

CET UTC+01:00

Start date:23 Dec 2022 09:30
End date:23 Dec 2022 17:30
Duration:1 day

$ 590

Open
Amazon Web Services

Exam Readiness: AWS Certified Machine Learning - Specialty

WGAC-AWS-ERMLS

Milan

Language: Italian

CET UTC+01:00

Start date:10 Feb 2023 09:30
End date:10 Feb 2023 17:30
Duration:1 day

$ 590

Open
Amazon Web Services

Exam Readiness: AWS Certified Machine Learning - Specialty

WGAC-AWS-ERMLS

Rome

Language: Italian

CET UTC+01:00

Start date:07 Apr 2023 09:30
End date:07 Apr 2023 17:30
Duration:1 day

$ 590

Open
Amazon Web Services

Exam Readiness: AWS Certified Machine Learning - Specialty

WGAC-AWS-ERMLS

Milan

Language: Italian

CET UTC+01:00

Start date:09 Jun 2023 09:30
End date:09 Jun 2023 17:30
Duration:1 day

$ 590

Open
Amazon Web Services

Exam Readiness: AWS Certified Machine Learning - Specialty

WGAC-AWS-ERMLS

Rome

Language: Italian

CET UTC+01:00

Start date:08 Sep 2023 09:30
End date:08 Sep 2023 17:30
Duration:1 day

$ 590

Description

Day One

Module 0: Course Introduction

Module 1: Exam Overview and Test-taking Strategies

  • Exam overview, logistics, scoring, and user interface
  • Question mechanics and design
  • Test-taking strategies

Module 2: Domain 1: Data Engineering

  • Domain 1.1: Data Repositories for machine learning
  • Domain 1.2: Identify and implement a data-ingestion solution
  • Domain 1.3: Identify and implement a data-transformation solution
  • Walkthrough of study questions
  • Domain 1 quiz

Module 3: Domain 2: Exploratory Data Analysis

  • Domain 2.1: Sanitize and prepare data for modeling
  • Domain 2.2: Perform featuring engineering
  • Domain 2.3: Analyze and visualize data for ML
  • Walkthrough of study questions
  • Domain 2 quiz

Module 4: Domain 3: Modeling

  • Domain 3.1: Frame business problems as machine learning (ML) problems
  • Domain 3.2: Select the appropriate model(s) for a given ML problem
  • Domain 3.3: Train ML models
  • Domain 3.4 Perform hyperparameter optimization
  • Domain 3.5 Evaluate ML models
  • Walkthrough of study questions
  • Domain 3 quiz

Module 5: ML Implementation and Operations

  • Domain 4.1: Build ML solutions for performance, availability, scalability, resiliency, and fault tolerance
  • Domain 4.2: Recommend and implement the appropriate ML services and features for a given problem
  • Domain 4.3: Apply basic AWS security practices to ML solutions
  • Domain 4.4: Deploy and operationalize ML solutions
  • Walkthrough of study questions
  • Domain 4 quiz

Module 6: Comprehensive study questions

Module 7: Study Material

Module 8: Wrap-up

We recommend that attendees of this course to have:

  • One or two years of hands-on experience developing, architecting, or running ML/deep learning workloads on the AWS cloud.
  • Proficiency at expressing the intuition behind basic ML algorithms and performing basic hyperparameter optimization
  • Understanding of complete ML pipeline and its components
  • Experience with ML and deep learning frameworks
  • Understanding and applying model training, deployment and operational best practices

This course is designed to teach you how to:

  • Identify their strengths and weaknesses in each of the exam domains.
  • Create a subsequent study plan to prepare for the exam.
  • Describe the technical topics and concepts making up each of the exam domains.
  • Summarize the logistics and mechanics of the certification exam and its questions.
  • Identify effective test taking strategies that can be used to answer exam questions.

The AWS Certified Machine Learning – Specialty exam validates a candidate's ability to design, implement, deploy, and maintain machine learning (ML) or deep learning (DL) solutions for given business problems.

People with one to two years of experience developing, architecting, or running ML/DL workloads on the AWS cloud should join this workshop to learn how to prepare to successfully pass the exam.

The workshop explores the exam’s topic areas, shows how they relate to machine learning on AWS, and also maps them to machine learning and deep learning foundational areas for future self-study. It includes sample exam questions from each domain and discussions of concepts being tested to help test-takers better eliminate incorrect responses.

Topics in the course will address each of the exam’s four subject domains. 1. Data Engineering 2. Exploratory Data Analysis 3. Modeling 4. Machine Learning Implementation and Operations

We use cookies to understand how you use our site and to improve your experience. To learn more, click here. Read our revised Privacy Policy and Terms and Conditions.